Has Silemek AC, Nolte G, Pöttgen J, Engel AK, Heesen C, Gold SM, Stellmann JP

Multiple sclerosis (MS) is an inflammatory and demyelinating disease which leads to impairment in several functional systems including cognition. Alteration of brain networks is linked to disability and its progression. However, results are mostly cross-sectional and yet contradictory as putative adaptive and maladaptive mechanisms were found. Here, we aimed to explore longitudinal reorganization of brain networks over 2-years by combining diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), magnetoencephalography (MEG), and a comprehensive neuropsychological-battery. In 37 relapsing-remitting MS (RRMS) and 39 healthy-controls, cognition remained stable over-time. We reconstructed network models based on the three modalities and analyzed connectivity in relation to the hierarchical topology and functional subnetworks. Network models were compared across modalities and in their association with cognition using linear-mixed-effect-regression models. Loss of hub connectivity and global reduction was observed on a structural level over-years (p < .010), which was similar for functional MEG-networks but not for fMRI-networks. Structural hub connectivity increased in controls (p = .044), suggesting a physiological mechanism of healthy aging. Despite a general loss in structural connectivity in RRMS, hub connectivity was preserved (p = .002) over-time in default-mode-network (DMN). MEG-networks were similar to DTI and weakly correlated with fMRI in MS (p < .050). Lower structural (β between .23-.33) and both lower (β between .40-.59) and higher functional connectivity (β = -.54) in DMN was associated with poorer performance in attention and memory in RRMS (p < .001). MEG-networks involved no association with cognition. Here, cognitive stability despite ongoing neurodegeneration might indicate a resilience mechanism of DMN hubs mimicking a physiological reorganization observed in healthy aging. 

J Neurosci Res. 2022 Oct 19

Link to Pubmed