Friese MA, Steinle A, Weller M.

The innate immune system encompasses natural killer (NK) cells, macrophages and granulocytes, the complement system and antimicrobial peptides. Recognition pathways of the innate immune system include microbial non-self recognition, missing-self recognition and induced- self recognition. The central nervous system (CNS) participates in responses of the innate immune system. However, immune inhibitory and anti-inflammatory mechanisms physiologically outbalance and counteract immune activity and thereby limit immune-mediated tissue damage in the brain. Human gliomas appear to take advantage of this immunosuppressive milieu. Moreover, glioma cells themselves interfere with anti-tumor immune responses by expressing immune inhibitory cell surface molecules, such as HLA-G, or by releasing soluble immunosuppressants such as transforming growth factor (TGF)-beta. Yet, although glioma cells exhibit all cellular features of malignancy, these tumors very rarely metastasize outside the brain, raising the possibility of immune-mediated control of these cells outside, but not inside, the brain. Accordingly, activating the innate immune system by forcing glioma cells to express danger signals such as NKG2D ligands is a promising strategy of immunotherapy for these tumors.

Onkologie 2004;27:487-91.

Link to Pubmed